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Abstract Tropical biogenic sources are a likely cause of the recent increase in global atmospheric
methane concentration. To improve our understanding of tropical methane sources, we used the eddy
covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the
atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the
measurement period, on the order of 0.024 g C-CH4·m

�2·day�1, was similar to eddy covariance FCH4
measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis
demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the
surface and that water table alone explained some 20% of observed FCH4 variability once standing water
emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to
better constrain tropical biogenic methane sources.

Plain Language Summary Methane (CH4) is the third most potent greenhouse gas, and its
reduction is seen as an effective method for meeting global temperature targets, but the global growth
rate of atmospheric CH4 concentration has risen to 10.3 ± 2.1 ppb/year from 2014 to 2016 after a period of
relative stagnation from 2000 to 2006. Recent research has pointed to tropical biogenic sources as a likely
cause. However, no studies to our knowledge have measured whole-ecosystem CH4 flux (FCH4) from a
tropical peat forested wetland to date despite the importance of tropical wetlands to global CH4 budget. To
improve our understanding of tropical methane sources, we measured FCH4 between a tropical peat forest
ecosystem in Malaysian Borneo and the atmosphere over a 2-month period during the dry to wet season
transition. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m

�2·day�1, are
similar to eddy covariance measurements from tropical rice agroecosystems and boreal fen ecosystems. A
linear modeling analysis demonstrated the important role of air temperature (Tair) during unsaturated
conditions and water table during saturated conditions and further emphasizes the critical role of simulating
temperature and water table accurately for accurate modeled ecosystem scale FCH4 estimates.

1. Introduction

The contribution of methane (CH4) to global radiative forcing is only exceeded by water vapor (H2O) and car-
bon dioxide (CO2), and CH4 absorbs 28 times more heat in the atmosphere than an equivalent amount of CO2

over the course of a century (Myhre et al., 2013). Due to its relatively high potency and short atmospheric life
span of about 10 years, a reduction in CH4 emissions is seen as an effective approach for mitigating climate
change (Shindell et al., 2012). Global atmospheric CH4 concentrations, however, are on the rise, and its
growth rate increased from 0.5 ± 3.1 ppb/year from 2000 to 2006 to 7.1 ± 2.6 ppb/year from 2007 to 2013
with a further increase to 10.3 ± 2.1 ppb/year from 2014 to 2016 (Dlugokencky, 2017) for reasons that are still
poorly understood.

Previous studies have come to different conclusions regarding the drivers of the atmospheric CH4 growth
rate over the past decades, making it difficult for national or regional policy makers to effectively implement
strategies to control the sources of CH4 emissions. Explanations for recent changes in atmospheric CH4

growth rate include changes in atmospheric sinks from the hydroxyl radical (Turner et al., 2017), changes
in fossil fuel emissions (Aydin et al., 2011; Hausmann et al., 2016; Helmig et al., 2016; Rice et al., 2016;
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Simpson et al., 2012) and changes in biogenic sources (Schaefer et al., 2016) including agricultural manage-
ment (Kai et al., 2011; Levin et al., 2012). A number of lines of evidence emphasize the critical role of biogenic
sources to the recent CH4 growth rate (Worden et al., 2017) especially tropical agricultural and natural wet-
land ecosystems (Bousquet et al., 2011; Pandey et al., 2017; Pison et al., 2013; Nisbet et al., 2016; Saunois,
Jackson, et al., 2016; Schwietzke et al., 2016).

Nearly two thirds of the global methane emissions of approximately 550 Tg CH4/year are thought to originate
from tropical sources (Denman et al., 2007; Kirschke et al., 2013; Saunois, Bousquet, et al., 2016) and nearly
one third from natural wetlands (Kirschke et al., 2013; Saunois, Bousquet, et al., 2016). At the regional scale,
Southeast Asia is estimated to emit 73 Tg CH4/year, dominated by wetland emissions (~37%) and agriculture
and waste emissions (~33%; Saunois, Bousquet, et al., 2016). Wetland emissions remain the largest uncer-
tainty in the global methane budget (Kirschke et al., 2013; Saunois, Bousquet, et al., 2016), owing in part to
a lack of observations. No studies to our knowledge have measured whole-ecosystem CH4 flux (FCH4) from
a tropical peat forested wetland to date despite the importance of tropical wetlands to global CH4 efflux
and recent studies demonstrating that the areal extent of tropical peat forests is greater than previously
thought (Dargie et al., 2017).

Here wemeasure FCH4 between a tropical peat forest in Sarawak, Malaysian Borneo, and the atmosphere dur-
ing the wet season using the eddy covariance technique. We choose the eddy covariance system to make
whole-ecosystem FCH4 measurements given recent findings that CH4 transport through tree stems may be
an important pathway that cannot be accounted for using soil chamber methods (Pitz & Megonigal, 2017)
and is a critical contribution of ecosystem-scale methane flux in tropical peatlands (Pangala et al., 2013,
2017). Eddy covariance can also measure aerobic CH4 emissions from vegetated canopies via ultraviolet
irradiation of pectin (Keppler et al., 2006), noting that recent studies demonstrate that this is likely to be a
minor source of atmospheric methane (McLeod et al., 2008), on the order of 0.2–1.0 Tg CH4/year (Bloom et al.,
2010). We place particular emphasis on understanding the mechanisms that control ecosystem FCH4 at the
ecosystem scale and discuss our FCH4 measurements in the context of similar measurements from other
global ecosystems.

2. Materials and Methods
2.1. Study Ecosystem and Micrometeorological Measurements

The study ecosystem is a tropical peat swamp forest in Maludam National Park in the Betong Division of
Sarawak, Malaysia. The terrain is relatively flat and homogenous across the site. Dominant vegetation in
the overstory includes Shorea albida, Gonystylus bancanus, and Stemonurus spp. (Anderson, 1972) with an
average canopy height of 35 m. The peat thickness is ~8 m in the vicinity of the tower located at 1°27013″N,
111°8058″E. A standard suite of micrometeorological measurements including rainfall (P), wind speed, air
temperature (Tair), relative humidity (RH, and thereby the vapor pressure deficit), volumetric soil water content
(SWC), soil temperature (Tsoil), incident photosynthetically photon flux densities (PPFDs), net radiation (Rn) and
global radiation (Rg), and water table (WT) height was made and recorded at half-hourly intervals as described
in the supporting information. We compare micrometeorological measurements from the 2-month period
when FCH4 was measured against 4 years of available micrometeorological observations to emphasize condi-
tions in which our observations were made versus a more complete range of micrometeorological variability
at the study site.

2.2. Eddy Covariance Measurements

Eddy covariance measurements of methane flux (FCH4) and carbon dioxide flux (FCO2) were made from 1
November to 31 December 2013 at 41 m using an open-path LI-7700 infrared gas analyzer for CH4 and
LI-7500 infrared gas analyzer for CO2 (LiCor, Lincoln, NE, United States), both coupled to a CSAT3 three-
dimensional sonic anemometer (Campbell Scientific, Logan, UT, United States). Postprocessing calculations
were performed using EddyPro software (LiCor). Double rotation was performed to align the x axis of the sonic
anemometer with the mean flow, and the Webb-Pearman-Leuning (WPL) correction (Webb et al., 1980) was
applied to compensate the density fluctuation effect and spectroscopic effect on measured CH4 and CO2.
Fluxes were corrected for frequency response losses (Massman, 2000), and the time lag between wind
measurements and CH4 and CO2 concentration measurements was compensated for each averaging period.
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We select FCH4 observations with a LI-7700 relative signal strength indicator (RSSI) greater than 10% follow-
ing the recommendations of McDermitt et al. (2011) and Chu et al. (2014) and explore the sensitivity of this
threshold in the supporting information (see Text S2 and Figure S1) given the frequency of dew formation
events that reduce the RSSI in tropical forest ecosystems with characteristically high dew points. To remove
measurements of both FCH4 and FCO2 made under conditions of insufficient turbulence, we used the atmo-
spheric stability threshold after Novick et al. (2004), which requires near-neutral atmospheric stability
(|ζ | < 0.1) for nighttime (PPFD <5 μmol·m�2·s�1) data acceptance given recent findings that common fric-
tion velocity (u*) filters do not adequately remove periods of insufficient turbulence from forested canopies
(Hayek et al., 2018; Jocher et al., 2017). Atmospheric stability is defined as ζ = (z � d)/L, where z is the mea-
surement height of the sonic anemometer, d is the zero-plane displacement height taken to be 10% of
mean canopy height following Campbell and Norman (2012), and L is the Obukhov length. In addition to
the atmospheric stability filter, a friction velocity (u*) threshold value of 0.1 m/s was included to further
ensure that FCH4 and FCO2 observations with insufficient turbulence were excluded from the analysis
following Novick et al. (2004).

We present FCH4 data from the top of the canopy as within-canopy CH4 concentration measurements were
not made to calculate a storage flux, which is negligible at diurnal time scales. We test the sensitivity of
this assumption for whole-ecosystem fluxes by approximating storage fluxes using the one point time
derivative (Gu et al., 2012) in the supporting information (see Text S3 and Figure S2). A LI-820 closed-path
CO2 analyzer (LI-COR) was deployed to measure the vertical profile of the CO2 mixing ratio (c) at six
levels within and above the canopy at 0.5, 1, 3, 11, 21, and 41 m. Air was drawn from each inlet at the
tower, and the sampling path was rotated every minute. Thus, the measurement for six levels took
6 min and the concentration was averaged over 30 min. The net ecosystem exchange of CO2 (NEE) was
calculated as the sum of FCO2 and the storage flux (Fs). The Fs was inferred from c profiles following
Aubinet et al. (2001):

Fs ¼ Pa
RTa

∫h0
∂c zð Þ
∂t

dz; (1)

where Pa, R, and Ta, are, respectively, the ambient pressure (N/m), molar constant (N m·mol�1·K�1), and air
temperature (K); h, c(z), t, and z represent the FCO2 measurements (m), time (s), and vertical distance from
ground surface (m), respectively.

2.3. Gap Filling of Flux Data

Continuous time series of scalar fluxes are not possible with eddy covariance systems due to periods of
insufficient turbulence and disturbances like rain events that impede sonic anemometers and open path
infrared gas analyzers. To obtain continuous time series to create daily and monthly sums of FCH4, we used
the marginal distribution sampling gap filling algorithm (Reichstein et al., 2005) as implemented in the
REddyProc package (Reichstein & Moffat, 2014). The routine adopts the look-up table approach where a
missing value is replaced by the mean value under similar meteorological conditions (Rg, vapor pressure
deficit, RH, Tair, and Ts), and the mean diurnal course method is used if the value could not be filled using
look-up table approach. We use this data-driven approach to minimize assumptions that model-based
gap filling approaches may introduce to the FCH4 data and because the relationship between environmental
drivers and whole-ecosystem CH4 fluxes has yet to be established.

The relationship between NEE and environmental drivers is largely well established, and to fill the gaps in
half-hourly NEE, we used the Mitscherlich model (e.g., Aubinet et al., 2001; Reichstein et al., 2012):

NEE ¼ � βM þ γMð Þ 1� exp
�αMPPFD
βM þ γM

� �� �
þ γM; (2)

where αM is the initial slope of the light response curve, βM is the gross ecosystem productivity (GEP) at light
saturation, and γM, the intercept parameter at PPFD = 0 μmol m�2·s�1, represents ecosystem respiration (RE).
We chose the Mitscherlich model because it results in realistic values of βM that can be used study its varia-
bility (Reichstein et al., 2012). Parameters were estimated using least squares regression for observations
using 7-day moving windows. GEP was calculated as the difference between the estimated RE and the
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observed NEE: GEP = RE + NEE using the meteorological convention that negative values indicate ecosystem
CO2 uptake.

2.4. Data Analysis

To understand the relationships between micrometeorological drivers, CO2 fluxes, and FCH4, we used least
squares regression and identified parsimonious linear models of FCH4 using information criterion techniques
via the dredge function of the “MuMIn” package in R (Bartoń, 2016). The dredge algorithm creates all possible
univariate and multivariate models of a dependent variable (in this case FCH4) based on independent vari-
ables (in this case all micrometeorological measurements and FCO2 measurements described above) and
selects themodel with the minimum value of the Akaike information criterion (AIC)—the model with the low-
est value of the likelihood function by number of model parameters—as the most parsimonious (Akaike,
1974). Given the uncertainties regarding the diurnal time course of FCH4 due to uncertainties regarding the
RSSI threshold, we explored models at the daily time scale using the daily sum of FCH4 and daily averages
of micrometeorological variables using the small sample size-corrected AIC (AICc) (see Figure S1).
Following studies that included carbon dioxide flux as additional explanatory variables for FCH4 (e.g.,
Christensen et al., 1996), we added NEE, GEP, and RE to the modeling analysis.

Figure 1. Time series of (a) daily cumulative rainfall, daily mean (±SE), (b) air temperature (Tair) and soil temperature (Ts),
(c) water table (WT) depth and soil water content (SWC), (d) net ecosystem CO2 exchange (NEE), and (e) non-gap-filled
and gap-filled methane (CH4) flux from the November and December 2013 study period in a tropical peat forest ecosystem
in Maludam National Park, Malaysian Borneo. For the non-gap-filled CH4 flux, observed fluxes that passed quality
control filters were averaged to arrive at a daily mean, and no observations passed quality control filters on 12 and 22
December. Error bars represent ±SE.
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3. Results
3.1. Micrometeorological Variability and Eddy Covariance Observations

Average Tair and Rg decreased from November 2013 (26.5°C; 17.7 MJ·m�2·day�1) to December 2013 (26.2°C;
14.6 MJ·m�2·day�1), and P increased from 224 to 562 mm/month (Figures 1a and 1b). SWC increased to field
capacity—with the exception of a weeklong period of decline in mid-November—as the WT approached and
then exceeded the soil surface in late November (Figure 1c). The probability distributions of measurements
shows that the Tair, RH, incoming PPFD (>5 μmol·m�2·s�1), WT, and SWC do not vary considerably between
the 4-year period of meteorological data availability and the 2-month study period (November–December
2013; Figure 2) excluding dry season periods when theWT was more than 10 cm below the surface. The study
period thus encompasses the transition from unsaturated to saturated soil conditions with standing water
present throughout December. NEE was positive, indicating CO2 loss to the atmosphere in early November
and at late December (Figure 1d), and was about 0.5 μmol·m�2·s�1 on average from mid-November until
mid-December. Nighttime stability, RSSI filters, and precipitation events resulted in 70% of the available
observations being removed from the FCH4 data record to ensure that only high-quality measurements under
fully developed turbulence were made. Energy balance closure during the study period was 51%, with the
relatively low value attributable in part to advective transport of heat by flowing water at this peatland study
site. We did not adjust biogeochemical fluxes as a result of lack of energy balance closure as suggested by
Baldocchi (2008).

Wind-rose analyses showed that the wind mainly came from southeast in November and northwest in
December (Figure 3a), suggesting a shift in dominant flux source area. As a consequence, we include the sinu-
soid of wind direction (sin(WD)) in the modeling analysis and perform the modeling analysis for each month
in addition to the combined 2-month period to explore if different variables are responsible for FCH4 across
time (Figure 1e) and space (Figure 3b).

3.2. CH4 Flux

Monthly average of gap-filled FCH4 (±SE) was higher in December (25.3 ± 0.6 nmol·m�2·s�1) than November
(20.3 ± 0.8 nmol·m�2·s�1; p < 0.05), but the temporal variability of FCH4 was higher during November
than December (Figure 1e). Further, both daytime and nighttime FCH4 were higher in December

Figure 2. Probability distribution of micrometeorological measurements during the 4-year period (2011–2014) versus the 2-month period (November–December
2013) for (a) air temperature (Tair), (b) relative humidity (RH), (c) photosynthetically active photon flux density (PPFD, selecting only daytime values taken to be
>5 μmol·m�2·s�1), (d) water table, and (e) soil water content (SWC).

10.1029/2017GL076457Geophysical Research Letters

TANG ET AL. 4394



(30 ± 1 nmol·m�2·s�1; 20 ± 0.4 nmol·m�2·s�1) than November (27 ± 1 nmol·m�2·s�1; 13 ± 0.6 nmol·m�2·s�1;
p < 0.05). The half-hourly mean FCH4 exhibited a few peaks in emissions on the order of 45 to
50 nmol·m�2·s�1 during the morning hours and began to decline after a peak around 10:00 local standard
time (see Figure 4a). Higher FCH4 was observed during the day (07:00–18:30; 29 ± 1 nmol·m�2·s�1) than at
night (19:00–06:30; 17 ± 0.3 nmol·m�2·s�1; p < 0.05) and a two-dimensional kernel density estimate
demonstrates two regions of higher FCH4 that correspond to the shift in WD from the southeast in
November to the northwest in December (Figure 3a). NEE during the studied period shows a strong diel
pattern with positive nighttime fluxes and maximum uptake of 12.5 μmol·m�2·s�1 at 11:30 hr (Figure 4b).

3.3. Models of Ecosystem-Scale CH4 Flux

Observations demonstrated little reason to justify nonlinear relationships between driver and response over
the observed range of FCH4 and micrometeorological variability (Figure 2); hence, we explore simple multiple
linear models of daily FCH4 that have the lowest AICc value for the case of daily measurements. The most

Figure 3. (a) Wind rose indicating the predominant wind direction at the study site during November and December 2013.
(b) The relationship between wind direction and CH4 flux (FCH4) as represented by a two-dimensional kernel density
estimate (“heat map”) for all half-hourly observations.
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parsimonious model for the entire measurement period included Tsoil, SWC, and WT: FCH4 = 0.254–
0.012Tsoil + 0.13 SWC to 0.001 WT and was able to capture 11% of the variability in daily FCH4. Including
NEE, GEP, and RE did not improve models of FCH4.

The linear modeling analyses selected different models for November and December, respectively. For
November, the model FCH4 = �0.54–0.0034 RH + 0.0096 Tair explains approximately 19% of the variability
in daily FCH4. About 20% of the variance in daily FCH4 can be explained by WT alone in December by
FCH4 = 0.044–0.0015 WT.

Figure 4. The diurnal pattern of half-hourly gap-filled mean (a) CH4 flux (FCH4) and (b) net ecosystem CO2 exchange during
the November–December 2013 measurement period in a tropical peat forest ecosystem in Maludam National Park,
Malaysian Borneo. The error bars represent ±SE.

Table 1
Mean Daily CH4 Flux Measured Using the Eddy Covariance Method From Different Ecosystems in North America, Europe, and Asia

Ecosystem Observation period CH4 flux (g C·m�2·day�1) References

Ponderosa pine, United States 14–19 August, 2007 0.0025 Smeets et al. (2009)
Soybean cropland, United Statesa May 2011 to May 2012 0.0063 Chu et al. (2014)
Arctic tundra, Russiaa 20 July 2003 to 19 July 2004 0.0066 Wille et al. (2008)
Aapa mire, Finland August 1995, May–June 1997, and September–October 1998 0.011 Hargreaves et al. (2001)
Aapa mire, Finland 4–13 June 2008 0.013 Hartley et al. (2015)
Rice paddy, United Statesa 1 March 2012 to 1 March 2013 0.014 Knox et al. (2015)
Pasture, United Statesa 1 March 2012 to 1 March 2013 0.016–0.031 Knox et al. (2015)
Rice fields, Philippinesa 1 December 2012 to 27 May 2013 0.018 Alberto et al. (2014)
Rice paddy, Taiwana 24 October to 23 November 2006 0.018 Tseng et al. (2010)
Boreal fen, Canada May–September 2007 0.019 Long et al. (2010)
Tropical peat forest, Malaysia November–December 2013 0.024 This study
Boreal fen, Finlanda March 2005 to February 2006 0.026 Rinne et al. (2007)
Subarctic peatland, Swedena January 2006 to December 2007 0.056 Jackowicz-Korczyński

et al. (2010)
Alpine wetland, Chinaa 23 July 2011 to 31 December 2013 0.062 Song et al. (2015)
Subtropical pastures, United Statesa 1 April 2013 to 31 March 2014 and 1

April 2014 to 31 March 2015
0.064 Chamberlain et al. (2017)

Restored old wetland, United Statesa 1 August 2012 to 1 August 2013 0.106 Knox et al. (2015)
Subtropical grass marshland, Taiwan Mid-August to end of September 2015 0.109 Philipp et al. (2017)
Freshwater marsh, United Statesa 1 March 2012 to 1 March 2013 0.14 Chu et al. (2014)
Restored young wetland, United Statesa March 2011 to March 2013 0.145 Knox et al. (2015)

Note. Positive values represent net flux from the surface to the atmosphere. Entries in bold compare our CH4 flux value with other different ecosystems in the
world in which the values are sorted in ascending order.
aSites that include one or more years of quasi-continuous observations.
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4. Discussion

Mean eddy covariance-measured FCH4 was on the order of 0.024 g C-CH4·m
�2·day�1 during the

November–December 2013 wet season measurement period. These values are of similar magnitude to
eddy covariance FCH4 measurements from rice agroecosystems in the Philippines and Taiwan
(~0.018 g C-CH4·m

�2·day�1, Alberto et al., 2014; Tseng et al., 2010; Table 1) measured across an annual
period and from boreal fens in Canada (measured during the growing season) and annual measurements
from Finland (~0.019–0.026 g C-CH4·m

�2·day�1, Long et al., 2010; Rinne et al., 2007). Results demonstrate
that the tropical peat rainforest study ecosystem during the wet season is near the mode of FCH4 from
other eddy covariance studies from global ecosystems, which ranged from 0.0025 g C-CH4·m

�2·day�1 in
a pine plantation (Smeets et al., 2009) to 0.14 g C-CH4·m

�2·day�1 in a freshwater marsh (Chu et al., 2014;
Table 1), noting that not all observations, including ours, encompassed an entire year of quasi-continuous
eddy covariance measurements.

Modeling analyses revealed relatively poor relationships between micrometeorological variability and daily
FCH4 across the entire measurement period, suggesting that above-canopy micrometeorological variables
and soil variables measured at a point do not capture whole-ecosystem FCH4, which may be the result of
multiple “hot spot hot moment” dynamics distributed across the flux footprint (Wilson et al., 2009).
However, simpler relationships emerged before and after the WT exceeded the surface, coinciding with
the transition from November to December (Figure 1c). Atmospheric variable Tair was an important model
input in November, but the hydrologic variable WT was an important input in December, suggesting a shift
in controls over methane efflux from unsaturated to saturated conditions. We note that we cannot exclude a
shift in source area from explaining part of the variability in observations and best fit models (Figure 3), but
variables related to WD were not identified as contributing to the most parsimonious explanation of CH4.
Surprisingly, the best fit model for the entire measurement period and for December alone included negative
term for WT, suggesting that high WT values may hinder FCH4 by serving as a barrier to diffusion despite an
increase in both FCH4 and WT across the measurement period. These results have important implications for
ecosystem models by demonstrating the important role of temperature during unsaturated conditions and
WT during saturated conditions and further emphasize the critical role of simulating temperature and WT
accurately for accurate modeled ecosystem scale FCH4 estimates (Cao et al., 1996; Walter et al., 2001). The
importance of WT further emphasizes the importance of ascertaining wetland area, especially tropical
wetland area, as a critical present and future uncertainty in the global CH4 budget (B. Zhang et al., 2017;
Z. Zhang et al., 2017).

Combined, measurements demonstrate that CH4 flux from a tropical peat forest was similar to other mana-
ged and natural wetland ecosystems, including those in different climate zones. Results also demonstrate
that meteorological variability described FCH4 poorly, in part due to the small range of micrometeorological
variables in a tropical peat ecosystem (Figure 2). In brief, FCH4 decreased under dry conditions with decreas-
ing SWC and RH before WT was at or below the surface, then increased once WT rose above the surface in
December before decreasing again as WT rose further (Figure 1).

5. Conclusions

Ecosystem-scale observations of FCH4 in an undisturbed tropical peat forest ecosystem in Malaysian Borneo
during the wet season demonstrated a CH4 source on the order of 0.024 g C·m�2·day�1, similar to eddy cov-
ariance measurements from rice agroecosystems in Southeast Asia and boreal fens in Finland and Canada
(Table 1) and near themode of FCH4 measurements across global ecosystems using the eddy covariance tech-
nique to date, noting that few observations at the annual time scale have been published to date. Modeling
results indicate that Tair was an important term for describing the variability of FCH4 before standing water
emerged, while WT height was important thereafter, but tended to explain only a small part of its variability,
on the order of 19% and 20%, respectively. Results do not point to this tropical peat forest as a disproportion-
ate to FCH4 on per unit area basis, but estimates of the area of tropical wetland ecosystems need to be
improved, and more ecosystem-scale FCH4 measurements in tropical wetlands need to be made, to better
understand their contribution to the global methane budget.
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